An Experimental Research on Enhancing the Strength and Its Resisting Property of Nano Silica Fly Ash Concrete
نویسنده
چکیده
This paper deals with the study of Nanotechnology experimentation in Civil Engineering which includes the development, advantages and limitations of Nano concreting technologies. For reducing carbon emission during cement manufacturing fly ash is used as a replacement in ordinary Portland cement which is termed as Portland pozzolana cement(PPC), this inclusion relatively increases the workability and the corrosion resisting capacity in concrete, but this replacement of fly ash in the ordinary Portland cement deviates the concrete strength consequently. Therefore, here we added Nano silica as an additive to fill up the deviation, and it is possible because the silica (S) in the sand reacts with calcium hydrate (CH) in the cement at Nano scale to form C-S-H bond as it improves the strengthening factor of concrete, which are in turn helpful in achieving high compressive strength even in early days. This process proved that the increase in strength may have a possibility of turning the concrete less alkaline because as the concentration of CH crystals is reduced the alkalinity of concrete will be reduced which can cause corrosion in reinforcement bars, Hence by the addition of Nanosilica, a significantly improved corrosion resistant property was identified in our experimental research. Also, the performance of reinforced Nano concrete and the fly ash added RC Beam Column joints were casted and their flexure strength results were compared with one another and their test results are presented in this paper
منابع مشابه
Combine Use of Fly Ash and Rice Husk Ash in Concrete to Improve its Properties (RESEARCH NOTE)
This research paper describes the study of combined effect of Fly Ash (FA) and Rice Husk Ash (RHA) on properties of concrete as partial replacement of Ordinary Portland Cement (OPC). These by-products are having high pozzolanic reactivity. In this research, the composition of mix was used with 10% RHA along with 10, 20 and 30% FA as partial replacement of cement. In this study, the compressive ...
متن کاملA Study on the Variation of Strength Properties of concrete With Replacement of cement using Nano-Silica (NS) and Fly Ash (FA)
This paper studies the recent investigations and development of combined application of Pozzolanic additions Nano-Silica (NS) and Fly Ash (FA) on the strength properties of concrete for sub sequential growth of concrete industry. This investigation not only saves the natural resources but also controls the environmental pollution by usage of wastes. The limited work is done on partial replaceme...
متن کاملPREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS
Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...
متن کاملComparative Study on Effects of Fly Ash, Nano Silica and Silica Fume on Properties of Glass Fiber Reinforced Self Compacting Concrete
Self Compacting concrete (SCC) is a flowing concrete that is able to consolidate under its own weight without any need for vibration. The high fluid nature of SCC makes it suitable for placing it in difficult conditions and in sections with congested reinforcement. Use of SCC overcomes the difficulties pertaining to casting conditions and reduces the man power required. Self compacting concrete...
متن کاملInfluence of High Temperatures on Flexural Strength of Foamed Concrete Containing Fly Ash and Polypropylene Fiber
In this study, the elevated temperature flexural strengths of lightweight foamed concrete (LFC) containing fly ash (FA) and polypropylene fiber (PF) was investigated experimentally and statistically. The variables included were the temperature degrees (in a range of 20 to 600°C), LFC densities of 600, 800, 1000, 1200 and 1400 kg/m3 and additive content. Two mixes were made by replacing 15% and ...
متن کامل